Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
or(true, y) → true
or(x, true) → true
or(false, false) → false
mem(x, nil) → false
mem(x, set(y)) → =(x, y)
mem(x, union(y, z)) → or(mem(x, y), mem(x, z))
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
or(true, y) → true
or(x, true) → true
or(false, false) → false
mem(x, nil) → false
mem(x, set(y)) → =(x, y)
mem(x, union(y, z)) → or(mem(x, y), mem(x, z))
Q is empty.
We use [23] with the following order to prove termination.
Recursive path order with status [2].
Quasi-Precedence:
[mem2, set1, =2] > [or2, union2] > false
nil > false
Status: true: multiset
union2: multiset
false: multiset
or2: [2,1]
=2: [1,2]
nil: multiset
mem2: [1,2]
set1: multiset